Remarks on S. Lang's Conjecture over Function Fields

نویسنده

  • Atsushi Moriwaki
چکیده

In this short note, we will show the following weak evidence of S. Lang conjecture over function elds. Let f : X ! Y be a projective and surjective morphism of algebraic varieties over an algebraically closed eld k of characteristic zero, whose generic ber is geometrically irreducible and of general type. If f is not birationally trivial, then there are countably many proper closed varieties fZ i g of X such that every quasi-section of f is contained in S i Z i .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks about Uniform Boundedness of Rational Points over Function Fields

We prove certain uniform versions of the Mordell Conjecture and of the Shafarevich Conjecture for curves over function fields and their rational points.

متن کامل

Uniformity of stably integral points on elliptic

0. Introduction Let X be a variety of logarithmic general type, deened over a number eld K. Let S be a nite set of places in K and let O K;S be the ring of S-integers. Suppose that X is a model of X over Spec O K;S. As a natural generalizasion of theorems of Siegel and Faltings, It was conjectured by S. Lang and P. Vojta ((Vojta], conjecture 4.4) that the set of S-integral points X(O K;S) is no...

متن کامل

Arithmetic Height Functions over Finitely Generated Fields

In this paper, we propose a new height function for a variety defined over a finitely generated field overQ. For this height function, we will prove Northcott’s theorem and Bogomolov’s conjecture, so that we can recover the original Raynaud’s theorem (Manin-Mumford’s conjecture). CONTENTS Introduction 1 1. Arakelov intersection theory 3 2. Arithmetically positive hermitian line bundles 6 3. Ari...

متن کامل

Some difference results on Hayman conjecture and uniqueness

In this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite Picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on Hayman conjecture. We also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...

متن کامل

Artin’s Conjecture and Elliptic Analogues

A well-known conjecture of Emil Artin predicts that every natural number a unequal to unity or a perfect square is a primitive root (mod p) for infinitely many primes p. In 1967, C. Hooley [Ho1] proved this conjecture assuming the generalized Riemann hypothesis (GRH) for the Dedekind zeta functions of certain Kummer extensions. In fact, he establishes an asymptotic formula for the number of suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007